
Integrating SwiftUI
into UIKit Apps

Natalia Panferova

2022

FREE SAMPLE

Introduction

Thank you for downloading a free sample of “Integrating SwiftUI into UIKit Apps”.

The sample includes the second subchapter of Chapter 2 - SwiftUI in a separate view

controller, and shows how to set up Hosting Controller in storyboards to present a

SwiftUI view within a UIKit app. To leann more about the book and to get the complete

copy with 6 chapters (each with multiple subchapters), a PDF, an EPUB and 6 full

projects with code illustrating various ways to use SwiftUI in existing UIKit projects,

you can visit our website: books.nilcoalescing.com/integrating-swiftui.

To get the most out of the subchapter provided in the free sample, you can follow

along with the code examples where we will be adding filtering functionality to a UIKit

app called Puppy Training. In the sample bundle you can find the PuppyTraining-starter

project that contains the initial setup and the PuppyTraining-final project with the integ-

rated SwiftUI part. In case you don’t have the complete free sample bundle yet, you can

get it from the subchapter page: books.nilcoalescing.com/integrating-swiftui/swiftui-

in-a-view-controller/hosting-controller-in-storyboards. The projects were created using

Xcode 14 and are set to target iOS 16 by default.

The subchapter provided in the free sample already assumes that you have a good

understanding of SwiftUI fundamentals. The complete book includes an entire chapter

just covering the essentials of the SwiftUI framework that would bring you up to speed

in case you haven’t worked with SwiftUI before or need a refresher.

The content of the free sample and the code in the projects is copyright Nil Coalescing

Limited. The free sample is licensed under the Creative Commons Attribution 4.0

International: creativecommons.org/licenses/by/4.0. You can use and share the

1

https://books.nilcoalescing.com/integrating-swiftui
https://books.nilcoalescing.com/integrating-swiftui/swiftui-in-a-view-controller/hosting-controller-in-storyboards
https://books.nilcoalescing.com/integrating-swiftui/swiftui-in-a-view-controller/hosting-controller-in-storyboards
https://creativecommons.org/licenses/by/4.0/

material in the free sample, but you are required to give an attribution. The app icons

for the projects in the sample were made using an SVG taken from iconmonstr.com.

If you have any questions about the “Integrating SwiftUI into UIKit Apps” book, feel free

to reach out to support@nilcoalescing.com.

SwiftUI in a separate view controller

Presenting UIHostingController programmatically

This subchapter is not included in the free sample.

Setting upHosting Controller in storyboards

Whenworkingwith storyboards in UIKit, we can use aHosting Controller from the object

library to present a SwiftUI view hierarchy. The controller created in the storyboard can

be prepared for presentation inside the storyboard segue action.

We will add a filter view built in SwiftUI to our sample Puppy Training app where users

can filter the exercises based on the difficulty level. The filter will be presented in a

bottom sheet using a storyboard segue.

2

SETTING UP HOSTING CONTROLLER IN STORYBOARDS 3

Screenshot of the sample puppy training app showing the main collection view built in UIKit and a filter view built in
SwiftUI and presented in a bottom sheet

Prepare the filter state data model

We’ll start by defining the data model for the filter in a separate file called Exercise-

FilterState.swift. The view controller in UIKit will own the data model and pass

it to the SwiftUI filter view to modify the selection. So that the change in selection can

be reflected in both the filter list and the collection view, the object encapsulating it has

to conform to the ObservableObject protocol, and the selection property has

to be marked with the @Published property wrapper. Both the ObservableObject

and the @Published property wrapper are included in the Foundation framework, so

it’s the only import we need in this file.

FREE SAMPLE

4 SWIFTUI IN A SEPARATE VIEW CONTROLLER

import Foundation

class ExerciseFilterState: ObservableObject {
@Published var selection: Exercise.Difficulty?

}

The ExercisesViewController defined inside the ExercisesViewControl-

ler.swift file will store an instance of the ExerciseFilterState and later pass

it to the SwiftUI view. We are going to assign the object to a private property on the

view controller.

class ExercisesViewController: UIViewController,
UICollectionViewDelegate {

private let filterState = ExerciseFilterState()

...
}

To make sure that the List view in the filter sheet can iterate over the difficulty

levels, we’ll make the Exercise.Difficulty enum conform to CaseIterable.

The exercise model can be found in the Exercise.swift file in the Data folder.

struct Exercise: Hashable {
enum Difficulty: CaseIterable {

case easy
case medium
case hard

var description: String {
switch self {
case .easy: return "easy"
case .medium: return "medium"
case .hard: return "hard"
}

}
}

...
}

FREE SAMPLE

SETTING UP HOSTING CONTROLLER IN STORYBOARDS 5

Build the filter view in SwiftUI

Next, we’ll build the SwiftUI view we want to present. We are going to define the list

of the exercise difficulty levels in a separate component and then embed it into a

container with the navigation bar title and controls.

We’ll create a newfile calledDifficultyFilterList.swift using the SwiftUI View

template. The view will receive a binding to an optional Exercise.Difficulty to

mark the selection. Each difficulty level will be presented in a List row. The currently

selected level for the filter will be marked with a checkmark symbol image.

The user will be able to select the difficulty in the filter by tapping on a row. To make

sure that the tap gesture is activated when the user taps anywhere in the row and

not just on the text or the image, we’ll apply the contentShape(.interaction,

Rectangle())modifier.

struct DifficultyFilterList: View {
@Binding var selection: Exercise.Difficulty?

var body: some View {
List(Exercise.Difficulty.allCases, id: \.self) { level in

HStack {
Text(level.description.capitalized)
Spacer()

if selection == level {
Image(systemName: "checkmark")

}
}
.padding(.vertical, 8)
.contentShape(.interaction, Rectangle())
.onTapGesture {

selection = level
}
.accessibilityElement(children: .combine)
.accessibilityAddTraits(.isButton)

}
.listStyle(.plain)

}
}

To be able to preview the DifficultyFilterList view in the canvas, we have to

FREE SAMPLE

6 SWIFTUI IN A SEPARATE VIEW CONTROLLER

slightly modify the preview provider. The DifficultyFilterList has to accept

a binding to a difficulty level, but we can create a constant one just for the preview

purposes.

struct DifficultyFilterList_Previews: PreviewProvider {
static var previews: some View {

DifficultyFilterList(selection: .constant(.medium))
}

}

Screenshot of Xcode previews showing the DifficultyFilterList view

Nowwe can define the filter view itself. We’ll create another file called ExerciseFil-

terView.swift also with the SwiftUI View template. The ExerciseFilterView

will receive the ExerciseFilterState object from UIKit, so we’ll add a filter-

State property to the view struct. The property has to bemarked with the @Observe-

dObject wrapper, because the view has to update when the selection changes to

show the checkmark.

TheDifficultyFilterList that we created earlier will bewrapped into aNaviga-

FREE SAMPLE

SETTING UP HOSTING CONTROLLER IN STORYBOARDS 7

tionStack or NavigationView if targeting iOS 15. Since in this case the navigation

bar comes from the SwiftUI layer, we can set it up using SwiftUI APIs. We can add

the title using the navigationTitle() modifier, set its display mode to inline

and add some navigation bar buttons. When we add buttons using the toolbar()

modifier in SwiftUI, they go into the navigation bar by default.

struct ExerciseFilterView: View {
@ObservedObject var filterState: ExerciseFilterState
@Environment(\.dismiss) private var dismiss

var body: some View {
NavigationStack {

DifficultyFilterList(selection: $filterState.selection)
.navigationTitle("Filter Exercises")
.navigationBarTitleDisplayMode(.inline)
.toolbar {

ToolbarItem(placement: .confirmationAction) {
Button("Done") {

dismiss()
}

}

ToolbarItem(placement: .cancellationAction) {
Button("Clear") {

filterState.selection = nil
dismiss()

}
}

}
}

}
}

Note that we can dismiss the sheet from within the SwiftUI view using a SwiftUI API

too. The dismiss action is injected into the environment by the framework and can

be used to dismiss modals or pop views from the navigation stack.

To preview ExerciseFilterView in the canvas we simply need to pass it an Ex-

erciseFilterState object instance in the preview provider.

struct ExerciseFilterView_Previews: PreviewProvider {
static var previews: some View {

ExerciseFilterView(filterState: ExerciseFilterState())
}

}

FREE SAMPLE

8 SWIFTUI IN A SEPARATE VIEW CONTROLLER

Screenshot of Xcode previews showing the ExerciseFilterView view

Add a Hosting Controller in the storyboard

After we defined our SwiftUI view, we need to add a Hosting Controller to present

the SwiftUI hierarchy from the UIKit layer of the app. We are going to do that in the

Main.storyboard file.

First, we’ll add a Bar Button Item to the ExercisesViewController in the

storyboard that will tigger the sheet presentation. We’ll call it Filter and set the

line.3.horizontal.decrease symbol as the image.

Then we’ll drag a Hosting Controller from the object library to the canvas and add a

Present Modally segue from the filter button to the Hosting Controller.

FREE SAMPLE

SETTING UP HOSTING CONTROLLER IN STORYBOARDS 9

Screenshot of Xcode showing the Main.storyboard file with a Hosting Controller in the canvas

We still need to set our ExerciseFilterView as the root view of the Hosting Con-

troller we just added. We can do that in the segue action method. We’ll open the

ExercisesViewController.swift in the assistant editor and control-drag from

the segue to an area inside the controller. Using the popup that appears, we’ll create a

Segue Action and call it showFilter. Inside this action we can prepare the Hosting

Controller for presentation.

We will create an instance of the ExerciseFilterView and pass it the filter-

State stored in the view controller. Then we will initialize a UIHostingController

with the coder passed to the action and the SwiftUI view. Once the controller is cre-

ated, we can customize it the way we would a regular UIViewController. Here we

are going to set a medium detent on its sheetPresentationController property

so that the filter sheet only covers half of the screen.

FREE SAMPLE

10 SWIFTUI IN A SEPARATE VIEW CONTROLLER

class ExercisesViewController: UIViewController,
UICollectionViewDelegate {
...

@IBSegueAction func showFilter(
_ coder: NSCoder

) -> UIViewController? {
let filterView = ExerciseFilterView(

filterState: filterState
)
let controller = UIHostingController(

coder: coder, rootView: filterView
)
controller?.sheetPresentationController?.detents = [

.medium()
]
return controller

}
]

Screenshot of Xcode with the storyboard and the ExercisesViewController open in assistant editor

If we run the app now and press the filter button the sheet will appear as expected.

The SwiftUI side already works correctly and tapping on a difficulty level will add a

checkmark to the row. But the UIKit part is not set up to react to the changes in the

FREE SAMPLE

SETTING UP HOSTING CONTROLLER IN STORYBOARDS 11

filter state yet.

Update UIKit layer from SwiftUI

The last thing left to do for the filter to function is to update the collection view to

reflect the selection. We are going to use the Combine framework to subscribe to

changes in the published property of the observable object and trigger a UI refresh.

We need to change the updateUI()method defined in the ExercisesViewCon-

troller to accept a filterSelection parameter. It will use the selection value

to filter the exercises provided by the ExercisesController and update the data

source with a new snapshot.

class ExercisesViewController: UIViewController,
UICollectionViewDelegate {
...

private func updateUI(
animated: Bool, filterSelection: Exercise.Difficulty? = nil

) {
let exercises = exercisesController.exercises

.filter { exercise in
filterSelection

.map { $0 == exercise.difficulty } ?? true
}

var snapshot = NSDiffableDataSourceSnapshot<
Section, Exercise

>()

snapshot.appendSections([.main])
snapshot.appendItems(exercises, toSection: .main)

dataSource.apply(snapshot, animatingDifferences: animated)
}

}

To observe the changes in filter selection we will add a subscriber to the selection

property of the ExerciseFilterState in the view controller. We need to import

Combine and add a cancellable property that will hold the subscription. Inside the

viewDidLoad()method we will create a subscription that triggers the UI update with

FREE SAMPLE

12 SWIFTUI IN A SEPARATE VIEW CONTROLLER

animation when selection changes.

import UIKit
import SwiftUI
import Combine

class ExercisesViewController: UIViewController,
UICollectionViewDelegate {

private var cancellable: AnyCancellable?

override func viewDidLoad() {
...

cancellable = filterState.$selection
.sink { [weak self] selection in

if selection != self?.filterState.selection {
self?.updateUI(

animated: true,
filterSelection: selection

)
}

}
}

...

}

Now the UIKit controller and the SwiftUI filter view are fully connected and the changes

in the filter are properly reflected in the collection view.

Using Combine is just one of the possible ways to react to changes in the observable

object on the UIKit side. I find it to be the most concise in this case, but you could

implement what works best within your app pattern. You could observe the changes

to the property with didSet and post a notification or call a delegate method to notify

the controller about the change.

FREE SAMPLE

SETTING UP HOSTING CONTROLLER IN STORYBOARDS 13

Subclassing UIHostingController

This subchapter is not included in the free sample.

Further reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading linksFurther reading links

• ObservableObject protocol - https://developer.apple.com/documentation/combine/observable
object
• ObservedObject property wrapper - https://developer.apple.com/documentation/swiftui/obse
rvedobject
• Binding property wrapper - https://developer.apple.com/documentation/swiftui/binding
• DismissAction - https://developer.apple.com/documentation/SwiftUI/DismissAction
• Combine framework - https://developer.apple.com/documentation/combine

FREE SAMPLE

https://developer.apple.com/documentation/combine/observableobject
https://developer.apple.com/documentation/combine/observableobject
https://developer.apple.com/documentation/swiftui/observedobject
https://developer.apple.com/documentation/swiftui/observedobject
https://developer.apple.com/documentation/swiftui/binding
https://developer.apple.com/documentation/SwiftUI/DismissAction
https://developer.apple.com/documentation/combine

	Introduction
	SwiftUI in a separate view controller
	Presenting UIHostingController programmatically
	Setting up Hosting Controller in storyboards
	Prepare the filter state data model
	Build the filter view in SwiftUI
	Add a Hosting Controller in the storyboard
	Update UIKit layer from SwiftUI

	Subclassing UIHostingController

