
Swift Gems
100+ tips to take your Swift code

to the next level

Natalia Panferova
2024



ii



Introduction

Welcome to “Swift Gems”! This book contains a collection of concise, easily digestible

tips and techniques designed for experienced developers looking to advance their

Swift expertise.

As an enthusiastic Swift developer with extensive experience in creating robust applic-

ations across multiple platforms, I have had the privilege to witness and contribute

to the evolution of Swift. This journey has provided me with invaluable insights and

advanced techniques that I am eager to share with the community. Swift’s versatility

allows it to be used effectively for both small-scale applications and complex enter-

prise systems, making it a top choice for developers looking to push the boundaries of

what’s possible in software development.

Recognizing that many experienced developers are constantly seeking ways to refine

their skills and expand their toolkit, this book is designed to serve as a resource for

enhancing the quality and efficiency of your Swift code. Whether you are developing

for iOS, macOS, watchOS, or tvOS, or even writing Swift on the server, the tips and

techniques compiled here will provide you with new perspectives and approaches to

tackle everyday coding challenges and innovate in your projects.

“Swift Gems” aims to bridge the gap between intermediate knowledge and advanced

mastery, offering a series of easily implementable, bite-sized strategies that can be

directly applied to improve your current projects. Each chapter is crafted with preci-

sion, focusing on a specific aspect of Swift development, from pattern matching and

asynchronous programming to data management and beyond. Practical examples

and concise explanations make complex concepts accessible and actionable.

1



2 INTRODUCTION

Furthermore, to ensure that you can immediately put these ideas into practice, each

concept is accompanied by code snippets and examples that illustrate how to in-

tegrate these enhancements effectively. The book is structured to facilitate quick

learning and application, enabling you to integrate advanced features and optimize

your development workflow efficiently.

Whether you’re looking to optimize performance, streamline your coding process, or

simply explore new features in Swift, this book will provide you with the tools and

knowledge necessary to elevate your coding skills and enhance your development

projects.

The content of the book is copyright Nil Coalescing Limited. You can’t share or redistrib-

ute it without a prior written permission from the copyright owner. If you find any issues

with the book, have any general feedback or have suggestions for future updates, you

can send us a message to support@nilcoalescing.com. I will be updating the

book when there are changes to the APIs and to incorporate important feedback from

readers. You can check back on books.nilcoalescing.com/swift-gems to see

if there have been new releases and view the release notes.

I hope you enjoy the book!



Patternmatching and control flow

Let’s explore some useful techniques that can be applied in pattern matching and

control flow in Swift.

We’ll delve into the powerful capabilities of Swift’s pattern matching, a feature that

goes beyond the basic switch-case structure familiar in many programming languages.

We’ll look into how to use various Swift constructs to elegantly handle conditions

and control flows, including working with enums and optional values. We’ll see how

to perform operations on continuous data ranges and manage optional values with

precision. The techniques we’ll cover can simplify our code and enhance its robustness

and readability.

This chapter is designed for experienced Swift developers who are looking to refine

their skills in efficiently managing program flow and handling data based on specific

patterns. By mastering these techniques, you will be equipped to write cleaner, more

expressive, and more efficient Swift code, harnessing the full potential of pattern

matching and advanced control flow to tackle real-world programming challenges

more effectively.

The free sample includes 4 tips from this chapter. To read the remaining 10 tips in

this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

3

https://books.nilcoalescing.com/swift-gems


4 PATTERN MATCHING AND CONTROL FLOW

Overload the patternmatching operator for custommatch-

ing behavior

Swift’s pattern matching is an exceptionally flexible technique predominantly used in

switch statements to accommodate a wide range of patterns. In this context, an

expression pattern within a switch case represents the value of an expression. The

core of this functionality hinges on the pattern matching operator (~=), which Swift

utilizes behind the scenes to assess whether a pattern corresponds with the value.

Typically, ~= performs comparisons between two values of the same type using ==.

However, the pattern matching operator can be overloaded to enable custom matching

behaviors, offering enhanced control and adaptability in how data is evaluated and

handled.

Let’s consider a custom type Circle and demonstrate how to implement custom

pattern matching for it. We’ll define a simple Circle struct and overload the ~=

operator to match a Circle with a specific radius. This overload will allow us to use

a Double in a switch statement case to match against a Circle.

struct Circle {
var radius: Double

}

func ~= (pattern: Double, value: Circle) -> Bool {
return value.radius == pattern

}

let myCircle = Circle(radius: 5)

switch myCircle {
case 5:

print("Circle with a radius of 5")
case 10:

print("Circle with a radius of 10")
default:

print("Circle with a different radius")
}



OVERLOADTHEPATTERNMATCHINGOPERATORFORCUSTOMMATCHINGBEHAVIOR5

We can add as many overloads as we need. For example, we can define custom logic

to check whether the Circle’s radius falls within a specified range. The switch

statement will now be able to match myCircle against Double values and ranges,

thanks to our custom implementations of the ~= operator.

func ~= (pattern: ClosedRange<Double>, value: Circle) -> Bool {
return pattern.contains(value.radius)

}

switch myCircle {
case 0:

print("Radius is 0, it's a point!")
case 1...10:

print("Small circle with a radius between 1 and 10")
default:

print("Circle with a different radius")
}

Custom pattern matching in Swift opens up a lot of possibilities for handling complex

typesmore elegantly. By overloading the~=operator, we can tailor the patternmatching

process to suit our custom types. As with any powerful tool, we should use it wisely to

enhance our code without compromising on readability.



6 PATTERN MATCHING AND CONTROL FLOW

Switch onmultiple optional values simultaneously

Utilizing tuple patterns in switch statements offers a robust way to handle multiple

optional values simultaneously, allowing for clean and concise management of various

combinations of those values.

Consider a scenario where we have two optional integers, optionalInt1 and op-

tionalInt2. Depending on their values, we might want to execute different actions.

Here’s how we can use a tuple pattern to elegantly address each possible combination

of these optional integers.

var optionalInt1: Int? = 1
var optionalInt2: Int? = nil

switch (optionalInt1, optionalInt2) {
case let (value1?, value2?):

print("Both have values: \(value1) and \(value2)")
case let (value1?, nil):

print("First has a value: \(value1), second is nil")
case let (nil, value2?):

print("First is nil, second has a value: \(value2)")
case (nil, nil):

print("Both are nil")
}

In this example, the switch statement checks the tuple (optionalInt1, option-

alInt2). The first case matches when both elements in the tuple are non-nil. Here,

each value is unwrapped and available for use within the case block. The second

and third cases handle the scenarios where one of the optionals is nil, and the other

contains a value. The final case addresses the situation where both optionals are nil,

allowing us to define a clear action for this scenario.

By structuring the switch this way, each combination of presence and absence of

values is handled explicitly, making the code both easier to follow and maintain. This

method significantly reduces the complexity that typically arises from nested if-else



SWITCH ON MULTIPLE OPTIONAL VALUES SIMULTANEOUSLY 7

conditions and provides a straightforward approach to branching logic based on

multiple optional values.



8 PATTERN MATCHING AND CONTROL FLOW

Iterate over items and indices in collections

Iterating over both the items and their indices in a collection is a common requirement

in Swift programming. While the enumerated()method might seem like the obvious

choice for this task, it’s crucial to understand its limitations. The integer it produces

starts at zero and increments by one for each item, which is perfect for use as a counter

but not necessarily as an index, especially if the collection isn’t zero-based or directly

indexed by integers.

Here’s a typical example using enumerated().

var ingredients = ["potatoes", "cheese", "cream"]

for (i, ingredient) in ingredients.enumerated() {
// The counter helps us display the sequence number, not the index
print("ingredient number \(i + 1) is \(ingredient)")

}

For a more accurate way to handle indices, especially when working with collections

that might be subsets or have non-standard indexing, we can use the zip() function.

This method pairs each element with its actual index, even if the collection has been

modified.

// Array<String>
var ingredients = ["potatoes", "cheese", "cream"]

// Array<String>.SubSequence
var doubleIngredients = ingredients.dropFirst()

for (i, ingredient) in zip(
doubleIngredients.indices, doubleIngredients

) {
// Correctly use the actual indices of the subsequence
doubleIngredients[i] = "\(ingredient) x 2"

}

This approach ensures that we are using the correct indices corresponding to the

actual positions in the modified collection.



ITERATE OVER ITEMS AND INDICES IN COLLECTIONS 9

For a better interface over zip(), we can also use the indexed()method from Swift

Algorithms. It’s equivalent to zip(doubleIngredients.indices, doubleIn-

gredients) but might be more clear.

import Algorithms

// Array<String>
var ingredients = ["potatoes", "cheese", "cream"]

// Array<String>.SubSequence
var doubleIngredients = ingredients.dropFirst()

for (i, ingredient) in doubleIngredients.indexed() {
// Do something with the index
doubleIngredients[i] = "\(ingredient) x 2"

}



10 PATTERN MATCHING AND CONTROL FLOW

Label loop statements to control execution of nested loops

One of the lesser-known yet incredibly useful features in Swift is the concept of named

loops. This feature enhances the control flow in our code, making complex loop

structures more manageable and readable.

Named loops are not a separate type of loop but rather a way of labeling loop state-

ments. In Swift, we can assign a name to loops (for, while, or repeat-while) and

use this name to specifically control the flow of the program. This is particularly useful

when dealing with nested loops and we need to break out of or continue an outer loop

from within an inner loop.

The syntax for naming a loop is straightforward. We simply precede the loop with a

label followed by a colon. Let’s consider a practical example. Suppose we are working

with a two-dimensional array and want to search for a specific value. Once the value

is found, we’d typically want to break out of both loops. Here’s how we can do it with

named loops.

let matrix = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]

]

let valueToFind = 5
searchValue: for row in matrix {

for num in row {
if num == valueToFind {

print("Value \(valueToFind) found!")
break searchValue

}
}

}

In this example, searchValue is the label for the outer loop. When valueToFind

is found, break searchValue terminates the outer loop, preventing unnecessary



LABEL LOOP STATEMENTS TO CONTROL EXECUTION OF NESTED LOOPS 11

iterations.

In nested loops, it’s often unclear which loop the break or continue statement is

affecting. Named loops remove this ambiguity, making our code more readable and

maintainable.



12 PATTERN MATCHING AND CONTROL FLOW



Functions,methods, and closures

Let’s delve into the world of functions, methods, and closures in Swift.

In this chapter, we explore the sophisticated mechanisms of Swift’s functions and

closures, key to crafting flexible and reusable code. You’ll learn about enhancing

function definitions, handling complex closures, and using advanced techniques to

make your functions more expressive and robust. We will also touch on how certain

features can simplify your code’s structure and increase its maintainability, such as

using OptionSet for configuration or employing type aliases to clarify complex closures.

Designed for experienced Swift developers, this chapter aims to deepen your under-

standing of function and closure mechanisms. By mastering these advanced tech-

niques in functions, methods, and closures, you will significantly enhance the flexibility

and efficiency of your Swift code.

To read all 12 tips included in this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

13

https://books.nilcoalescing.com/swift-gems


14 FUNCTIONS, METHODS, AND CLOSURES



Custom types: structs, classes, enums

In Swift, the power to define and manipulate custom types—such as structs, enums,

and classes—is fundamental to building robust and efficient applications. This chapter

dives into advanced techniques for defining and enhancing custom types, aimed at

improving their functionality and efficiency in your applications. You’ll explore how to

make your types more expressive, such as by customizing their string representations

or enabling initialization from literal values, which makes them as straightforward to

use as built-in types.

We’ll cover key strategies for balancing custom behavior with automated features, like

preserving memberwise initializers while adding custom ones. Efficiency is another

major focus, with techniques like implementing copy-on-write to manage memory

effectively and ensuring types use only the necessary resources.

Additionally, you’ll learn how to use enumerations for modeling complex data struc-

tures and managing instances with precision, such as through factory methods or by

simplifying comparisons with automatic protocol conformance.

By mastering these techniques, you’ll be able to create sophisticated, efficient custom

types that leverage Swift’s type system, enhancing both the performance and clarity of

your code.

To read all 12 tips included in this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

15

https://books.nilcoalescing.com/swift-gems


16 CUSTOM TYPES: STRUCTS, CLASSES, ENUMS



Advancedpropertymanagementstrategies

This chapter explores advanced techniques for effective property management in

Swift, providing you with strategies to enhance code robustness and efficiency. It

covers essential topics such as dynamic property initialization, access control, and

the use of property wrappers to encapsulate behavior. You will learn to optimize

property initialization to prevent resource wastage and ensure that properties maintain

a consistent state through computed values and property observers.

The chapter also delves into modern Swift features like asynchronous property getters

and error handling in property contexts, equipping you with the skills to handle complex

scenarios and improve the maintainability of your code.

Through these insights, you will master the nuanced management of properties in

Swift, enabling you to build more reliable and scalable applications.

To read all 10 tips included in this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

17

https://books.nilcoalescing.com/swift-gems


18 ADVANCED PROPERTY MANAGEMENT STRATEGIES



Protocols and generics

This chapter explores the sophisticated use of protocols and generics in Swift, which

are essential for developing flexible and secure software components. You’ll learn

how to customize protocols for specific class types and set precise requirements for

them. Additionally, you’ll discover how to boost protocol capabilities with associated

types and streamline your code with default implementations in protocol extensions.

These techniques enhance the simplicity and organization of your code while maintain-

ing its adaptability. You’ll also learn to build strong and organized interfaces through

protocol inheritance and the use of factory methods, which simplify the creation of

types that conform to protocols.

With practical examples to guide you, this chapter will arm you with the skills to

effectively use protocols and generics, greatly improving the strength and ease of

maintenance of your Swift applications.

To read all 10 tips included in this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

19

https://books.nilcoalescing.com/swift-gems


20 PROTOCOLS AND GENERICS



Collection transformations and optimiz-

ations

In this chapter, we’ll delve into the art of manipulating and optimizing collections in

Swift. From arrays to dictionaries, you’ll explore a variety of techniques that enhance

the functionality and performance of these fundamental data structures. We’ll cover

everything from sorting arrays with closures and mapping with key paths to efficiently

transforming dictionary values and utilizing lazy collections for resource management.

This chapter will equip you with the skills to handle large datasets, implement type-safe

operations, and ensure your collections are both efficient and easy to manage. By

the end of this chapter, you’ll be well-versed in leveraging Swift’s powerful features

to manipulate collections in a way that is both memory-efficient and optimized for

performance, making your applications faster and more reliable.

To read all 13 tips included in this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

21

https://books.nilcoalescing.com/swift-gems


22 COLLECTION TRANSFORMATIONS AND OPTIMIZATIONS



Stringmanipulation techniques

This chapter explores foundational techniques for manipulating strings in Swift, es-

sential for creating effective and user-friendly applications. You’ll learn how to handle

string indices for precise manipulations, manage multiline strings to avoid unwanted

newlines, and use raw strings to simplify handling special characters.

Additionally, the chapter delves into enhancing expressiveness and functionality

through custom string interpolation, allowing for more flexible and tailored text

output. We also cover dynamic string concatenation techniques that adapt to various

programming needs.

By mastering these string handling techniques, you will enhance the readability and

maintainability of your code, ensuring that your applications can efficiently process and

display text data. These practices provide the essential tools for any Swift developer

aiming to build robust, navigable, and efficient text-based features in their projects.

To read all 8 tips included in this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

23

https://books.nilcoalescing.com/swift-gems


24 STRING MANIPULATION TECHNIQUES



Asynchronous programming and error

handling

This chapter delves into advanced techniques for managing asynchronous opera-

tions in Swift, a crucial aspect for building responsive and efficient applications.

You’ll explore how to effectively bridge traditional completion handlers with mod-

ern async/await syntax and execute main-actor-isolated functions within Dis-

patchQueue.main.async for UI safety. We’ll also discuss how to use yield() to

allow other tasks to proceed during lengthy operations and implement task cancellation

mechanisms to stop unnecessary work, optimizing resource usage.

Additionally, you’ll learn how to manage the execution of concurrent tasks with priorit-

ies and delay tasks using modern clock APIs. Handling and refining error management

in asynchronous code is also covered, including strategies for rethrowing errors with

added context and defining the scope of try explicitly. Finally, we’ll look at transform-

ing and converting the results of asynchronous operations, enhancing error handling

and the usability of the Result type.

These advanced strategies will provide you with the tools to write cleaner, more robust

asynchronous code, improving the performance and reliability of your Swift applica-

tions.

To read all 11 tips included in this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

25

https://books.nilcoalescing.com/swift-gems


26 ASYNCHRONOUS PROGRAMMING AND ERROR HANDLING



Logging and debugging

This chapter dives into essential debugging and logging techniques in Swift, focusing

on tools and practices that enhance error detection and program analysis. You’ll

learn how to use assertions to catch logical errors early in the development process

and enrich debug logs with contextual information for clearer insights. We’ll explore

how to implement custom nil-coalescing in debug prints and customize output with

CustomDebugStringConvertible for more informative debugging. Additionally,

we’ll look into techniques for introspecting properties and values at runtime, along

with utilizing the dump() function for in-depth analysis.

These strategies will equip you to effectively debug and refine your Swift applications,

ensuring they run smoothly and efficiently.

To read all 6 tips included in this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

27

https://books.nilcoalescing.com/swift-gems


28 LOGGING AND DEBUGGING



Code organization

This chapter explores effective strategies for organizing code in Swift to enhance

readability and maintainability. Learn how to manage shared resources, encapsulate

utilities, and use enums as namespaces to keep your codebase clean and modular.

We’ll also touch on important practices for maintaining code quality and adaptability,

such as highlighting code for review and managing framework compatibility.

These techniques are essential for building a structured, navigable, and efficient code-

base in your Swift projects.

To read all 6 tips included in this chapter you need to purchase the book from:

https://books.nilcoalescing.com/swift-gems

29

https://books.nilcoalescing.com/swift-gems


30 CODE ORGANIZATION


	Introduction
	Pattern matching and control flow
	Overload the pattern matching operator for custom matching behavior
	Switch on multiple optional values simultaneously
	Iterate over items and indices in collections
	Label loop statements to control execution of nested loops

	Functions, methods, and closures
	Custom types: structs, classes, enums
	Advanced property management strategies
	Protocols and generics
	Collection transformations and optimizations
	String manipulation techniques
	Asynchronous programming and error handling
	Logging and debugging
	Code organization

