FREE SAMPLE

SwiftUI

Fundamentals
The essential guide to SwiftUI

core concepts and APIs

Natalia Panferova

2025

Preface

Welcome to SwiftUI Fundamentals!

This book distills the core principles and foundational concepts behind SwiftUI,
the modern UT framework for building apps across Apple platforms. My goal is
to help you go beyond surface-level understanding and develop a deep, practical
knowledge of how SwiftUI works under the hood.

SwiftUI provides a simple, declarative way to build user interfaces, but behind
that simplicity is a carefully designed architecture that can be tricky to grasp
without the right perspective. In this book, we’ll explore the key APIs and
design patterns that power SwiftUI, giving you a solid foundation to write more
efficient, maintainable, and expressive code.

I've been working with SwiftUI since it was first released and later had the
privilege of contributing to its development as a member of the core SwiftUI
team at Apple, where I helped design and build some of the framework’s most
widely used APIs. I wrote this book to share the insights I gained during that
time, insights that will help you better understand how SwiftUT is built and

how you can use it more effectively in your own projects.

This is not a beginner’s tutorial. It’s written for developers who have already
experimented with SwiftUI and have a working knowledge of the Swift language.
The examples here are designed to demonstrate how the framework’s principles
apply in real-world scenarios, equipping you with the understanding you need

to solve problems independently and confidently.

SwiftUI is evolving every year, and having a solid grasp of its core principles is
the best way to stay ahead. By the end of this book, you’ll not only know how
to use SwiftUI, you’'ll understand why it works the way it does.

Text and localization

SwiftUI provides powerful tools for displaying and adapting text in user inter-
faces. The Text view is at the core of this system, handling everything from
simple labels to dynamically formatted content. Combined with SwiftUT’s auto-
matic support for localization, it ensures that user-facing text adapts seamlessly

to different languages, regions, and device settings.

This chapter examines how the Text view resolves its content and adapts to its
environment. We’ll explore the nuances of text initializers, how localization
impacts text rendering, and ways to use formatting and styling to create clear

and dynamic text-based interfaces.

Text initializers and contextual behavior

When we talk about text in SwiftUI, we might immediately think of the Text
view, which explicitly displays non-editable text to the user. However, many
built-in SwiftUI components also include text elements. When we initialize
common views and controls, we often provide a label, a string, or a string
literal. Passing a string is simply a convenience for creating a Text label for the
control. Since these labels are Text views internally, all styling and localization

techniques that apply to standalone Text views also apply to control labels.

Like all SwiftUT views, Text is a struct. It stores information internally and
resolves that information into a string at render time. The final string that
appears on the screen depends on how we create the text and the context in

which it is placed.

For example, if we initialize a Text view and assign to a variable, it remains

unresolved until it’s added to the view hierarchy.

let movieTitle = Text("How to Train Your Dragon")

To be rendered as a string on screen, Text requires an environment. Some
of this environment may be defined by developers using view modifiers and
environment values, while other parts are determined by SwiftUI itself based
on the text’s placement. Device settings, such as dark mode, accessibility text

size, and locale, will also impact how Text is resolved.

SwiftUT automatically adapts text styling based on the environment it inherits.
For example, inserting the movieTitle text into a VStack and applying a red
foreground style to the hierarchy results in it being displayed in red.
VStack(spacing: 12) {

movieTitle
Text("w ww www")

.foregroundStyle(.red)

FREE SAMPLE

How to Train Your Dragon

AW\ A\

Text reading ‘How to Train Your Dragon’in red, displayed above six popcorn emoji

However, the same movieTitle text behaves differently when placed inside a
Link. If no explicit foreground style is applied, SwiftUI automatically styles it
using the default link color.

Link(destination: trailerURL) {
HStack {
Text(||~u)

movieTitle

& How to Train Your Dragon

A movie camera emoji next to the text ‘How to Train Your Dragon’in blue

Even the actual string that is displayed can change based on the localization
settings of the device.

Choosing the right Text initializer

So far, we know that the Text struct stores data and resolves it into a string at
render time. The way this data is stored directly impacts how it is rendered.
SwiftUI provides multiple initializers for Text, it can be created from a string
literal or variable, a date with a specified format, an image, or an attributed
string. Choosing the right initializer helps prevent unexpected behavior.

One of the most subtle but crucial differences in text initialization is between
using a string variable and a string literal. Consider the following:

let favoriteMovie = "The Lion King"
Text(favoriteMovie)

Text("The Lion King")

FREE SAMPLE

These two examples seem identical, but SwiftUI treats them differently. When
Text is initialized with a string variable, the framework calls the generic initial-
izer that accepts a value conforming to StringProtocol. This means SwiftUI
stores the text as a standard Swift String. However, when Text is initialized
with a string literal, SwiftUI uses the LocalizedStringKey initializer. The
LocalizedStringKey type conforms to ExpressibleByStringlLiteral, and
it takes priority over the StringProtocol initializer. SwiftUT assumes that

string literals should be localized.

The path SwiftUI follows to resolve text into a string differs based on the initial-
izer used. If Text stores a String, the framework displays it as-is without look-
ing for localization. If Text stores a LocalizedStringKey, SwiftUI searches
for a translation in the main bundle. If it doesn’t find the appropriate localiza-
tion, it falls back to displaying the key itself.

If we are not localizing the app, we might not notice the difference in beha-
vior immediately. However, understanding this distinction is crucial to avoid
surprises, as LocalizedStringKey has additional functionality. For example,
LocalizedStringKey supports interpolating more types, such as images and
dates, and also parses Markdown, enabling richer text rendering directly within
SwiftUI.

FREE SAMPLE

Localization in SwiftUI

Localization ensures that user-facing text adapts to the user’s language, region,
and culture. SwiftUI simplifies this process by automatically treating string
literals in many built-in components, such as Text, Label, Button, and others,
as localizable. These components use LocalizedStringKey for string literals,
ensuring translations are applied at runtime based on the user’s locale without
requiring additional configuration in most cases.

Button(
"Watch trailer", // LocalizedStringKey
action: playTrailer

Xcode integration

When the project is built, Xcode automatically includes localizable strings from
SwiftUI views in the string catalog, provided one is present in the project. The
string catalog offers a centralized and efficient way to manage translations and

organize all user-facing text.

SwiftUI supports adding comments to provide translators with additional
context. These comments can be included when initializing Text, ensuring
translations are accurate and aligned with the intended usage.

Text(

"Showtimes",

comment: "Header for the list of movie showtimes"
)
If we need to provide a comment for the label of another SwiftUI component,
such as a button, we can use the initializer that accepts a view instead of the
convenience one that takes a string literal directly.

Button(action: displayShowtimes) {
Text(
"View showtimes",
comment: "Button to display showtimes"

}

When exporting the localization catalog, Xcode includes the comment alongside

FREE SAMPLE

the string, ensuring that translators have all the necessary information.

For larger projects, translations can be organized by splitting them into multiple
catalogs. We can reference specific catalogs using the tableName parameter,
which helps maintain scalability and clarity in projects with numerous localiz-
able strings.

Text("Explore movies", tableName: "Navigation")

For advanced scenarios, such as strings defined in external frameworks or
modules, we can specify additional parameters like bundle to control where
the system looks up translations.

Text("Cast & Crew", bundle: Bundle(for: MovieDetails.self))

String interpolation

SwiftUI allows us to include variables within text using string interpolation.
This makes it easy to combine dynamic content, such as dates and numbers,
with static text while ensuring the entire string is properly localized.

Text("Release date: \(movie.releaseDate, style: .date)")

When we embed variables into a Text view, SwiftUT automatically converts
them into format specifiers in the exported localizable strings files and catalog.
The resulting key for the example above would be Release date: %a.

At runtime, SwiftUI replaces the placeholder with the appropriately formatted
value, such as in the French translation shown below, ensuring the string adapts

to the user’s locale.

Date de sortie: 30 janvier 2025

French text displaying ‘Date de sortie: 30 janvier 2025

Localized string interpolation in SwiftUT supports a wide range of types, in-
cluding numeric values, Foundation types, and even SwiftUI components like
Text and Image.

FREE SAMPLE

Text("Enjoy \(Image(systemName: "popcorn")) at the movies!")

In this example, the Image is embedded directly into the Text view. At runtime,
the image appears inline with the text, maintaining the visual and contextual
consistency of the string.

Enjoy @ at the movies!

Text reading ‘Enjoy popcorn at the movies’ with a popcorn icon displayed inline with the text

Explicitly localizing strings

For strings that are not directly tied to SwiftUI views, such as those used in
custom models or general Swift structures, we can use the String(local-
ized:) initializer. This explicitly marks the string as localizable and ensures it
is included in the localization catalog.

let movieTitle = String(
localized: "Spirited Away",
comment: "Title of the featured movie in the app"

This initializer also allows us to provide comments for translators, similar to

how comments are added in SwiftUI Text views.

By leveraging SwiftUI’s built-in localization features and seamless integra-
tion with Xcode’s string catalog, we can efficiently adapt our apps to different

languages and regions, providing users with a tailored and intuitive experience.

FREE SAMPLE

Text formatting

SwiftUT makes it simple to format and present a wide range of dynamic content
in Text views. Whether displaying lists, dates, measurements, or other types of
information, SwiftUI provides flexible formatting options that adapt naturally
to the user’s locale and context. This ensures that text remains clear, readable,

and appropriate across different regions and languages.

Format styles

SwiftUT’s Text views provide flexible options for formatting data using the
format parameter, which takes a FormatStyle. This enables us to present
structured data directly within a text view, adapting its appearance to suit

different contexts and locales.

For instance, an array can be formatted as a grammatically correct list.

let genres = ["action", "comedy", "drama"]
Text("Genres: \(genres, format: .list(type: .and))")

Genres: action, comedy, and drama

Text displaying ‘Genres: action, comedy, and drama’ formatted as a grammatically correct list

The list format style will adjust automatically when the array is modified, en-

suring the text is updated appropriately as items are added or removed.

Measurements, such as distances or dimensions, can be displayed in a format
appropriate for the user’s locale. SwiftUI handles unit conversions seamlessly,
presenting values in units familiar to the user.

let screenWidth = Measurement(
value: 18, unit: UnitLength.meters
)

Text("""
Screen width: \(
screenWidth,
format: .measurement(width: .wide)

)
")

FREE SAMPLE

10

Screen width: 59 feet

Text displaying ‘Screen width: 59 feet’ with a measurement formatted for the user’s locale

Numeric values, such as prices or totals, can be formatted to include a currency
symbol and displayed in the appropriate monetary style.

let price = 15.99
Text(llllll
Ticket price: \(price, format: .currency(code: "USD"))

")

Ticket price: $15.99

Text displaying ‘Ticket price: $15.99’ formatted with a currency symbol

By using FormatStyle, we can manage how data is presented in Text views
with clarity and precision, tailoring the output to suit different requirements

and regional conventions.

Dynamic dates

Text view allows us to display dates and times that update dynamically as time
passes. By interpolating a date with styles like relative, of fset, or timer,
we can present time-sensitive information that remains accurate without addi-

tional code.

For instance, to show the remaining time until a specific event, we can use
the relative style. The Text view will automatically calculate the difference
between the current date and the target date, and update the displayed value
in real time.

Text("\(showtime, style: .relative) left until showtime")

59 min, 53 sec left until showtime

Text displaying ‘59 min, 31 sec left until showtime’

FREE SAMPLE

11

By default, digits in the text use proportional widths, meaning their spacing can
vary depending on the numbers displayed. This might cause the text to shift
slightly as it updates. To avoid this, we can apply the monospacedDigit()
modifier to ensure all numeric characters occupy the same width, while leaving
other characters unaffected.

Text("\(showtime, style: .relative) left until showtime")

.monospacedDigit()
This approach ensures the text remains visually stable as the numeric values

change, improving the overall appearance of the interface.

Plurals

SwiftUT leverages the Foundation framework’s automatic grammar agreement
feature to simplify handling plurals and reduce the need for extensive loc-
alization strings. This ensures that text follows grammatical rules, such as
pluralization, without requiring additional logic in our code.

To automatically adjust text for plural values, we can use the inflection rule
and define the scope of the adjustment with the following syntax:

Text(""[\(ticketsSold) ticket](inflect: true) sold")

SwiftUI parses this syntax as a custom Markdown attribute and applies the
appropriate pluralization using Foundation’s grammar engine. For instance, if
ticketsSoldis 1, the text will display “1 ticket sold”. When the value increases
to 2 or more, it will adjust to “2 tickets sold”, “3 tickets sold”, etc., ensuring

grammatical accuracy.

2 tickets sold

Text displaying ‘2 tickets sold’

The grammar engine supports multiple languages, applying the correct plural-
ization rules for each. Initially introduced in iOS 15 with support for English
and Spanish, it has since been expanded. As of i0S 18, it includes languages

FREE SAMPLE

12

such as German, French, Italian, Portuguese, Hindi, and Korean, making it a
versatile solution for multilingual apps.

FREE SAMPLE

13

Styling Text views

SwiftUI provides several approaches to styling text, allowing us to create visually
rich and dynamic content. By leveraging view modifiers, text-specific modifiers,
Markdown, or attributed strings, we can tailor text to fit a variety of design

requirements.

View modifiers

We can style text in SwiftUI using view modifiers, such as font(_:), fore-
groundStyle(_:), and many others. These modifiers can be applied directly
to a Text view to customize its appearance or to a container view to apply

styling across multiple text elements.

Since string labels in SwiftUI controls, such as buttons, are internally repres-
ented as Text, these modifiers also apply to them. This approach simplifies

styling and maintains visual consistency within the interface.

VStack {
Text("Now Showing: Inside Out 2")
Button("Get Tickets", action: purchaseTickets)
.buttonStyle(.bordered)

}
.font(.headline)
.fontDesign(.rounded)

Here, both the standalone Text and the button label adopt the headline font
with a rounded design, creating a unified appearance for all text elements in

the container.

Now Showing: Inside Out 2

Get Tickets

Text and a button styled with a headline font and rounded font design

FREE SAMPLE

14

Text modifiers

In addition to standard view modifiers, which can be applied anywhere in the
view hierarchy, SwiftUI provides text-specific modifiers tailored for styling indi-
vidual Text views. Unlike view modifiers, which apply to any SwiftUI view and
return some View, text modifiers return another Text instance when applied
directly to Text. This distinction allows text modifiers to target specific parts
of a string, making them particularly effective when working with interpolated

or concatenated text.

Text modifiers are ideal for emphasizing particular words or phrases within a
sentence. By using interpolation, we can apply styles to individual segments

while leaving the surrounding text unchanged.

TeXt(nun
Showtimes: \(Text("Friday").bold()) \
and)\(Text("Saturday").bold())

In this example, “Friday” and “Saturday” are styled in bold, visually distinguish-
ing them from the rest of the text, which retains the default font weight.

Showtimes: Friday and Saturday

Text reading ‘Showtimes: Friday and Saturday’ with ‘Friday’ and ‘Saturday’ styled in bold

Modifiers like foregroundStyle(_:) can also be applied inline to add custom
styles, such as colors or gradients.

Text("""
only \(
Text("25")
.foregroundStyle(
.linearGradient(

colors: [.pink, .purplel],
startPoint: .leading,
endPoint: .trailing

)

) tickets left!
nn II)

FREE SAMPLE

15

Here, the number 25 is displayed in a pink and purple gradient, drawing atten-
tion to the numeric value while keeping the rest of the text un-styled.

Only 25 tickets left!

Text reading ‘Only 25 tickets left!” with the number 25 styled in a pink and purple gradient

Text interpolation combined with text modifiers provides precise control over
formatting, enabling selective styling of text content. This flexibility is invalu-
able when emphasizing specific details and creating visually engaging text
layouts.

Markdown

SwiftUT supports Markdown formatting within text views when Text is initial-
ized from a string literal. This feature allows for easy application of text styles
such as bold, italic, strikethrough, and monospace. By using Markdown, we
can directly embed these styles into the text, eliminating the need for additional

modifiers and simplifying the styling process.

Here is how we can emphasize a word with italic style:

Text("See *Spider-Man* on the big screen tonight!")

See Spider-Man on the big
screen tonight!

Text saying ‘See Spider-Man on the big screen tonight!” with the title Spider-Man in italics

We can also embed links directly in text, and SwiftUI will automatically render
them as interactive elements. When a URL is included in a string literal using
Markdown syntax, the Text view detects it and makes it tappable without

requiring additional code to handle interactions.

Text("Get tickets on our [website](https://example.com).")

FREE SAMPLE

16

Get tickets on our website.

Text saying ‘Get tickets on our website’ with the word ‘website’ styled as a blue clickable link

The link adopts the default system styling for interactive text. If necessary, the
tint(_:) modifier can be used to adjust its color.

Text("Get tickets on our [website](https://example.com).")
.tint(.pink)
Get tickets on our website.

Text saying ‘Get tickets on our website’ with the word ‘website’ styled as a pink clickable link

While SwiftUT supports inline Markdown styles and links, it does not recognize
paragraph-level formatting such as headers or code blocks. Markdown in Text

is best suited for simple formatting and inline enhancements.

Attributed strings

Another way to style portions of text in SwiftUI is by using the Attributed-
String APIs. These provide a modern and strictly typed way to apply attributes
to text.

We can define an AttributedString and passitto a Text view to style specific
parts of the text. For instance, we can set a background color and a foreground
color for a substring, and SwiftUI will render it accordingly.

FREE SAMPLE

17

struct PremiereView: View {
var attrString: AttributedString {
var attrString = AttributedString(
"Premiere: The Wild Robot"

if let range = attrString.range(
of: "The Wild Robot"
) o

.mint
.black

attrString[range].backgroundColor
attrString[range].foregroundColor

return attrString

var body: some View {
Text(attrString)
}

Premiere: [he/WildiRobot

Text saying ‘Premiere: The Wild Robot’ with ‘The Wild Robot’ highlighted in mint green

Attributes for AttributedString are organized into scopes, with each UI
framework, such as UIKit, AppKit, and SwiftUI, defining its own. The SwiftUI
scope includes attributes such as foregroundColor, backgroundColor, font,
kern, tracking, underlineStyle, strikethroughStyle, and baselin-
e0ffset. Any attributes not supported by SwiftUT are ignored when a Text
view renders an AttributedString.

SwiftUT also recognizes some Foundation attributes, such as links and inline
presentation intent. Accessibility attributes are included as well, enabling

customization for assistive technologies to improve the user experience.

FREE SAMPLE

	Preface
	Text and localization
	Text initializers and contextual behavior
	Choosing the right Text initializer

	Localization in SwiftUI
	Xcode integration
	String interpolation
	Explicitly localizing strings

	Text formatting
	Format styles
	Dynamic dates
	Plurals

	Styling Text views
	View modifiers
	Text modifiers
	Markdown
	Attributed strings

